Analisis Perilaku User pada Pemanfaatan Layanan Pemesanan Tiket Online pada Aplikasi Mobile (Prespektif Kepercayaan dan Resiko oleh Konsumen)
DOI:
https://doi.org/10.12695/jmt.2017.16.1.5Keywords:
Perilaku Pengguna, Mobile Commerce, Resiko, Kepercayaan, Technology Acceptance Model (TAM).Abstract
Abstrak. Penelitian ini bertujuan untuk menyelidiki pengaruh empat elemen “trust’, “risk†“perceived usefulness†dan “ease of use†terhadap perilaku konsumen dalam mengadopsi teknologi mobil untuk pemesanan tiket secara online. Penelitian ini penting dilakukan dalam rangka memahami pola hubungan antara elemen “trusk†dan “risk†yang mempengaruhi perilaku konsumen di Indonesia dalam memanfaatkan layanan M-Commerce. Sebuah model penelitian dan lima buah hipoteses dikembangkan dalam penelitian ini. Model dan hipoteses kemudian diuji dan divalidasi menggunakan data yang diperoleh dari sebuah survey yang dilaksanakan secara online. Penyebaran kuesioner secara online dilakukan melalui aplikasi media sosial. Dari 110 kuesioner yang diisi oleh responden sebanyak 95 kuesioner dinyatakan valid dan digunakan untuk dianalisis lebih lanjut. Data yang diperoleh dianalisis menggunakan Partial Least Square (PLS) memanfaatkan perangkat lunak Smart PLS V2. Hasil dari pengolahan data mengindikasikan bahwa elemen “perceived usefulness†dan “esae of useâ€mempunyai pengaruh yang positif terhadap aktivitas konsumen dalam menggunakan teknologi mobil untuk pemesanan tiket online, penelitian juga menemukan hubungan antara elmen “trust†dan elemen “riskâ€. Namun penelitian ini tidak menemukan hubungan yang signifikan antara elemen “risk†dengan  perilaku konsumen dalam menggunakan aplikasi mobile.
Kata kunci: Perilaku Pengguna, Mobile Commerce, Resiko, Kepercayaan, Technology Acceptance Model (TAM).
Â
Abstract. The aim of this research is to investigate the relationship between the elements of trust, risk, perceived usefulness, and ease of use and their impact on consumer behavior in the intention of use of mobile commerce services for online ticketing. Â A research model with five hypotheses was developed for this research. Conducting this research is important in term off to understand the relationship of trust and risk in order to understand people behavior in using mobile commerce. Research model and hypotheses was validated using online questionnaire that distrubed in social media. 110 questionnaire was obtained from the survey and 95 validated questionnaire then use for next analysis. Partial Smart Square (PLS) was used for data analyisis using Smart PLS V2. This study reveals that perceived usefulness and ease of use has significant effect for people behavior in using mobile application for purchase online ticketing, this research also identified that trust has relationship with risk element. However, this research did not found any significant relationship between risk and people behavior in using mobile application.
Keyword: User Behavior, Mobile Commerce, Trust, Risk, Technology Acceptance Model (TAM)
Â
Downloads
References
Ashraf, A. R., Thongpapanl, N., and Auh, S. (2014). The application of the technology acceptance model under different cultural contexts: The case of online shopping adoption. Journal of International Marketing, 22(3), 68-93.
Boudreau, M.-C., Gefen, D., and Straub, D. W. (2001). Validation in information systems research: a state-of-the-art assessment. Mis Quarterly, 1-16.
Chatzoglou, P. D., Kamperidou, S. E., Vraimaki, E., Polychrou, E., Aggelidis, V. P., and Diamantidis, A. D. (2014). Factors affecting the adoption of internet banking in Greece. International Journal of Applied Systemic Studies, 5(4), 290-310.
Chin, W. W. (2010). How to write up and report PLS analyses. In Handbook of partial least squares (pp. 655-690): Springer.
Chiu, C.-M., Chang, C.-C., Cheng, H.-L., and Fang, Y.-H. (2009). Determinants of customer repurchase intention in online shopping. Online information review, 33(4), 761-784.
Cozzarin, B. P., and Dimitrov, S. (2016). Mobile commerce and device specific perceived risk. Electronic Commerce Research, 16(3), 335-354.
Dahlstrom, R., Nygaard, A., Kimasheva, M., and M. Ulvnes, A. (2014). How to recover trust in the banking industry? A game theory approach to empirical analyses of bank and corporate customer relationships. International Journal of Bank Marketing, 32(4), 268-278.
Davis Jr, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Massachusetts Institute of Technology.
Dimitriadis, S., and Kyrezis, N. (2008). Does trust in the bank build trust in its technology-based channels? Journal of Financial Services Marketing, 13(1), 28-38.
Fishbein, M., and Ajzen, I. (2011). Predicting and changing behavior: The reasoned action approach: Taylor & Francis.
Goosen, K. R., Wolfe, J., and Gold, S. C. (2014). Panel Discussion: Alternative Ways of Using the Internet for Business Simulations to Input Decisions, Process, and Present Financial and Economic Data Output. Developments in Business Simulation and Experiential Learning, 34.
Groß, M. (2016). Impediments to mobile shopping continued usage intention: A trust-risk-relationship. Journal of Retailing and Consumer Services, 33, 109-119.
Hillman, S., and Neustaedter, C. (2016). Trust and mobile commerce in North America. Computers in Human Behavior.
Hoehle, H., and Venkatesh, V. (2015). Mobile application usability: conceptualization and instrument development. Mis Quarterly, 39(2), 435-472.
Kim, H.-Y., Lee, J. Y., Mun, J. M., and Johnson, K. K. (2016). Consumer adoption of smart in-store technology: assessing the predictive value of attitude versus beliefs in the technology acceptance model. International Journal of Fashion Design, Technology and Education, 1-11.
Kim, S., and Park, H. (2013). Effects of various characteristics of social commerce (s-commerce) on consumers’ trust and trust performance. International Journal of Information Management, 33(2), 318-332.
Kourouthanassis, P. E., and Giaglis, G. M. (2012). Introduction to the special issue mobile commerce: the past, present, and future of mobile commerce research. International Journal of Electronic Commerce, 16(4), 5-18.
Luo, X., Li, H., Zhang, J., and Shim, J. (2010). Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decision support systems, 49(2), 222-234.
Malaquias, R. F., and Hwang, Y. (2016). An empirical study on trust in mobile banking: A developing country perspective. Computers in Human Behavior, 54, 453-461.
Martins, C., Oliveira, T., and PopoviÄ, A. (2014). Understanding the Internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. International Journal of Information Management, 34(1), 1-13.
McKnight, D. H., Choudhury, V., and Kacmar, C. (2002). Developing and validating trust measures for e-commerce: An integrative typology. Information systems research, 13(3), 334-359.
Mortenson, M. J., and Vidgen, R. (2016). A computational literature review of the technology acceptance model. International Journal of Information Management, 36(6), 1248-1259.
Mukherjee, A., and Nath, P. (2003). A model of trust in online relationship banking. International Journal of Bank Marketing, 21(1), 5-15.
Ooi, K.-B., and Tan, G. W.-H. (2016). Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card. Expert Systems with Applications, 59, 33-46.
Park, S., and Tussyadiah, I. P. (2016). Multidimensional Facets of Perceived Risk in Mobile Travel Booking. Journal of Travel Research, 0047287516675062.
Roy, S. K., Kesharwani, A., and Singh Bisht, S. (2012). The impact of trust and perceived risk on internet banking adoption in India: An extension of technology acceptance model. International Journal of Bank Marketing, 30(4), 303-322.
Sharma, A. (2002). Trends in Internet-based business-to-business marketing. Industrial marketing management, 31(2), 77-84.
Siau, K., and Shen, Z. (2003). Building customer trust in mobile commerce. Communications of the ACM, 46(4), 91-94.
Slade, E. L., Dwivedi, Y. K., Piercy, N. C., and Williams, M. D. (2015). Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk, and Trust. Psychology & Marketing, 32(8), 860-873.
Stewart, D. W., and Zhao, Q. (2000). Internet marketing, business models, and public policy. Journal of Public Policy & Marketing, 19(2), 287-296.
Tarhini, A., Hone, K., Liu, X., and Tarhini, T. (2016). Examining the moderating effect of individual-level cultural values on users’ acceptance of E-learning in developing countries: a structural equation modeling of an extended technology acceptance model. Interactive Learning Environments, 1-23.
Yousafzai, S., Pallister, J., and Foxall, G. (2009). Multi-dimensional role of trust in Internet banking adoption. The Service Industries Journal, 29(5), 591-605.
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Copyright @2023. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted non-commercial used, distribution and reproduction in any medium.