Investigating Aggressive Driving Behavior in Reducing Traffic Congestion on Bandung City
DOI:
https://doi.org/10.12695/jmt.2018.17.2.5Keywords:
driving behavior, traffic congestion, factor analysis, agent-based simulation, smart cityAbstract
Abstract. Traffic congestion reflects waste of time and energy that must be eliminated. Many methods have been employed by past studies to solve this problem. The approach utilized by those studies is mostly macroscopic that consider vehicles and drivers in aggregate. This study argues that a more microscopic approach is also required to depict and solve the congestion problem. Hence, agent-based simulation is brought forward to help identify the cause of congestion problem. In this study, drivers are assumed to have their own motives that might drive them to resort to aggressive behaviors that ultimately lead to traffic congestion. As a preliminary investigation, this study aims to discover type of aggressive driving behavior on Bandung City. The results demonstrate that aggressive dirivng behaviors on Bandung City can be categorized into five factors namely improper speed, inattentiveness, display of hostility, impatience, and disobedience of traffic sign/signals. This study also found that different composition of driving behaviors leads to different degree of congestion. Impatience behavior is found to be the factor that must be eliminate to remedy congestion on Bandung City.
Kata kunci:Â Driving behavior, traffic congestion, factor analysis, agent-based simulation, smart city
Abstrak. Kemacetan lalu lintas mencerminkan pemborosan energi dan waktu yang harus ditiadakan. Banyak metode telah digunakan dalam penelitian-penelitian masa lalu yang ditujukan untuk memecahkan permasalahan ini. Pendekatan yang digunakan oleh penelitian-penelitian tersebut untuk menggambarkan dan memecahkan masalah kemacetan pada umumnya bersifat makroskopik yang memandang kendaraan dan pengendara secara agregat. Studi ini berpendapat bahwa pendekatan yang lebih mikroskopis diperlukan dalam menggambarkan dan memecahkan permasalahan kemacetan. Dalam studi ini, pengemudi diasumsikan memiliki motif tersendiri saat berkendara yang dapat mendorong mereka untuk berperilaku agresif dan berujung pada kemacetan. Sebagai penyelidikan awal, studi ini bertujuan untuk mengetahui jenis perilaku mengemudi agresif di Kota Bandung. Hasil dari studi ini menunjukkan bahwa perilaku mengemudi agresif dapat dikategorikan menjadi lima faktor yaitu penggunaan kecepatan yang tidak sepantasnya, kurangnya perhatian saat berkendara, perilaku kekerasan dalam berkendara, ketidaksabaran dalam berkendara, dan ketidaktaatan pada tanda lalu lintas. Studi ini juga menemukan bahwa komposisi perilaku mengemudi agresif yang berbeda dapat menghasilkan perbedaan tingkat kemacetan lalu lintas. Ketidaksabaran dalam berkendara ditemukan sebagai factor yang paling harus dieliminasi untuk mengurangi kemacetan di Kota Bandung.
Keywords: Perilaku mengemudi, kemacetan lalu lintas, analisis factor, simulasi berbasis agen, smart city
Downloads
References
Beck, K. H., Daughters, S. B., & Ali, B. (2013). Hurried driving: Relationship to distress tolerance, driver anger, aggressive and risky driving in college students. Accident Analysis & Prevention, 51, 51-55. Elsevier. doi: 10.1016/j.aap.2012.10.012
Burmeister, B., Haddadi, A., and Matylis, G. (1997). Application of multi-agent systems in traffic and transportation. IEE Proceedings – Software Engineering, vol. 144, issue 1 (pp. 51–60). doi: 10.1049/ip-sen:19971023.
Federal Highway Administration of United States. Cambridge Systematics, Inc. & Texas Transportation Institute. (2005). Traffic Congestion and Reliability: Trends and Advanced Strategies for Congestion Mitigation. Retrieved from: https://ops.fhwa.dot.gov/congestion_report/congestion_report_05.pdf
Das, S. (2011). Cellular automata based traffic model that allows the cars to move with a small velocity during congestion. Chaos, Solitons & Fractals, 44(4), 185-190. Doi: 10.1016/j.chaos.2011.01.012.
Galovski, T., & Blanchard, E.B. (2002). Psychological characteristics of agressive drivers with and without intermittent explosive disorder. Behavior Research & Therapy, 40(10), 1157-1168. Doi: 10.1016/S0005-7967(01)00083-3
Hager, K., Rauh, J. and Rid, W. (2015). Agent-based modeling of traffic behavior in growing metropolitan areas. Transportation Research Procedia, 10, 306-315. Doi: 10.1016/j.trpro.2015.09.080.
Jain, V., Sharma, A., & Subramanian, L. (2012). Road traffic congestion in the developing world. Proceedings of the 2nd ACM Symposium on Computing for Development. Doi: 10.1145/2160601.2160616.
James, L., & Nahl, D. (2000). Road rage and aggressive driving: steering clear of highway warfare. Amherst, New York: Prometheus Books.
Kaiser, S., Furian, G. and Sclembach, C. (2016). Aggressive behaviour in road traffic – findings from Austria. Transportation Research Procedia, 14, 4384-4392. Elsevier. Doi: 10.1016/j.trpro.2016.05.36
Khalesian, M., & Delavar, M. R. (2008). A multi-agent based traffic network micro-simulation using spatio-temporal GIS. Center of Excellence in Geomatics Eng. and Disaster Management, 10, 31-36. Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.2430&rep=rep1&type=pdf
Ljubović, V. (2009). Traffic simulation using agent-based models. XXII International Symposium on Information, Communication and Automation Technologies (ICAT), 1-06. IEEE. Doi: 10.1109/ICAT.2009.5348417
Manley, E., Cheng, T., Penn, A., & Emmonds, A. (2014). A framework for simulating large scale complex urban traffic dynamics through hybrid agent-based modelling. Computers, Environment and Urban Systems, 44, 27–36. Elsevier. doi: 10.1016/j.compenvurbsys.2013.11.003
Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation. Journal of simulation, 4(3), 151-161. Retrieved from: https://link.springer.com/content/pdf/10.1057/jos.2010.3.pdf
Nagel & Schreckenberg. (1992). A cellular automaton model for freeway traf-fic, J. Phys. I, 2221-2229. Doi: 10.1051/jp1:1992277.
Naveteur, J., CÅ“ugnet, S., Charron, C., Dorn, L., & Anceaux, F. (2013). Impatience and time pressure: subjective reactions of drivers in situations forcing them to stop their car in the road. Transportation Research Part F: Traffic Psychology and Behaviour, 18, 58-71. Elsevier. doi: 10.1016/j.trf.2012.12.008
Organisational for Economic Co-operation and Development (OECD). (2007). Managing Urban Traffic Congestion. Retrieved from: https://www.itf-oecd.org/sites/default/files/docs/07congestion.pdf
Rarestep Inc. Fleetio Drive [Web site]. (2018). Retrieved from: https://www.fleetio.com/drive
Rossetti, R. J., Bampi, S., Liu, R., Van Vliet, D., & Cybis, H. B. B. (2000). An agent-based framework for the assessment of drivers' decision making. Intelligent Transportation Systems, 2000. Proceedings, IEEE (pp. 387-392). IEEE. doi: 10.1109/ITSC.2000.881094
Badan Pusat Statistik Provinsi Jawa Barat, Indonesia. (2016). Statistik Transportasi Jawa Barat 2016. (Catalog: 8301007.32). Retrieved from: https://jabar.bps.go.id/publication/2017/11/30/982a69db82129c7d6fcd61be/statistik-transportasi-jawa-barat-2016.html.
Wickens, C., Hollands, J., Banburry, S., & Parasuraman, R. (2013). Engineering Psychology and Human Performance. New York: Pearson Education Inc.
Wiyono, T. S., Saputra, R., & Sarwoko, E. A. (2012). Pengembangan Sistem Informasi Pendaftaran Surat Ijin Mengemudi Online. Journal of Informatics and Technology, 1(1), 52-62. Retrieved from: https://ejournal3.undip.ac.id/index.php/joint/article/viewFile/354/355.
Zhang, G., Zhao, M., Sun, D. H., Liu, W. N., & Li, H. M. (2016). Stabilization effect of multiple drivers' desired velocities in car-following theory. Physica A: Statistical Mechanics and its Applications, 442, 532-540. Doi: 10.1016/j.physa.2015.09.022
Zhou, Lin & Xi. (2012). A dynamic network partition method for heterogenous urban traffic networks. 15th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE. Doi: 10.1109/ITSC.2012.6338712
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Copyright @2023. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted non-commercial used, distribution and reproduction in any medium.