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The introduction of electric generation based 
on renewable resources like sun, water, and 
wind, is one of the major parts of smart grid. 
However, the amount of electricity 
generated from renewable sources (called 
micro grid) is fluctuating and uncontrollable 
(Molderink et al, 2010). In this situation, 
additional production of electricity power is 
necessary to reduce demand fluctuation, 
supply uncertainty, and avoid power 
shortage for some users.  
 
Each of the users in smart grid can become a 
producer of electricity by installing 
renewable electricity source. We can call 
this user as the active user. They have an 
ability to manage their appliance load, 
generate a small amount of electricity from 
renewable sources, and keep their own 
energy in term of electricity and heat. Active 
users in decentralized power system have 
two obvious advantages over passive user in 
centralized ones, such as improve energy 
usage and contribute to emission reduction 
(Gu et al, 2014). Active users can both buy 
and sell electricity to the other active users 
or to the electric company. 
 
Besides increasing the production capacity 
of the renewable energy in house, the 
household tenants have to be able to manage 
their electricity usage trough changing their 
behavior. Understanding the behavior of the 
user in using electricity is important in this 
situation. By adjusting their behavior, they 
can maximize utilization of renewable 
energy sources, minimize usage of 
electricity, and help the other user in needs. 
Similar with lateral transshipment of 
inventory system in disaster recovery 
(Mulyono and Ishida, 2014), each active 
user can mutually help the other active users 
having electric shortage.  
 
We proposed a methodology to understand 
the behavior of the active users in using 
electricity. We utilize game theory to model 
the behavior and interaction between active 
users on their way to maximize their benefit 
over electricity consumption and production. 
The active users are players in a game that 
defined by a common goal with different 
constraints and conflicting objectives. We 
use game against nature to predict the 

behavior of electricity consumption of active 
users. We are focusing on the cooling and 
heating appliances since those appliances are 
major contributor of electricity consumption. 
 
The remaining of this paper is structured as 
follows. The following section provides an 
overview of several related work on smart 
grid. Section three introduces a model of 
user interaction to minimize the electricity 
consumption and support the other active 
users. Section four describes an 
implementation of the model trough 
simulation process. We conclude this paper 
with a discussion of the result. 
 
2. Related Work 
 
Development of smart power grid, that 
augments traditional power grid system, is 
one of the greatest inventions in the last 
decade. In contrast with traditional power 
grid system, that carries electricity power 
from a few central generators to a large 
number of users, smart grid uses two-way 
flows of electricity and information to create 
and distribute electricity. Smart grid 
includes the entire spectrum of the energy 
system from the points of generation to the 
points of consumption. Smart grid is 
decentralized electricity power system that 
uses two ways information and 
computational intelligence in an integrated 
fashion toward electricity generation, 
transmission, substations, distribution, and 
consumption to achieve electricity system 
that is safe, clean, secure, reliable, efficient, 
resilient, and sustainable (Gharavi and 
Ghafurian, 2011). 
 
The International Energy Agency concludes 
that, although decentralized electricity 
system has a higher cost than centralized 
ones, it has potential to supply all demand 
with the same reliability but with lower 
capacity margin (International Energy 
Agency, 2002). We can simply define smart 
grid as a decentralized power grid that 
involves four operations like power 
generation, transmission, distribution, and 
control. Table 1 shows the difference 
between conventional power grid and smart 
grid (Farhangi, 2010). From the technical 
perspective, smart grid consists of three 
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major systems such as smart infrastructure 
system, smart management system, and 
smart protection system (Fang et al, 2013).  
 
Smart infrastructure system is the energy, 
information, and communication 
infrastructure underlying the smart grid. 
This infrastructure supports two-way flow of 
electricity and information. Smart 
management system provides advanced 
management and control services and 
functionalities. Smart protection system 
provides advanced grid reliability analysis, 
failure protection, security, and privacy 
system.  

 
Table 1. Comparison between conventional grid and 

smart grid (Farhangi, 2010)  
 

Conventional Power 
Grid 

Smart Grid 

Electromechanical Digital 
One-way communication Two-way 

communication 
Centralized generation Distributed generation 
Few sensors Sensors throughout 
Manual monitoring Self-monitoring 
Manual restoration Self-healing 
Failures and blackouts Adaptive and islanding 
Limited control Pervasive control 
Few customer choices Many customer choices 
 
In the beginning of smart grid development, 
many research focused on distributed 
generation management, energy storage and 
demand side management. Stability of the 
grid is studied intensively by (Azmy and 
Erlich, 2005) having a conclusion that 
electric generators are key to grid stability. 
In energy storage field, one of the hot topics 
is level out the electricity demand 
fluctuation by combining electricity storage 
with renewable resource such as windmill 
(Costa et al, 2008). Most literature in 
demand side load management used the 
agent-based solution having a hierarchical 
structure ensures the scalability of the 
solution (Molderink et al, 2010). Interaction 
of the electricity user also modeled using 
agent-based solution. Each of the smart grid 
users is an active user having the ability to 
consume, produce, and share electricity 
between them. 
 
Game theory is the best tool to model the 
interaction of a user to maximize their 
payoff. Game theory related to the actions of 

decision makers who are conscious about 
their actions and its effect. A game consists 
of a principal and a finite set of players, each 
of which selects a strategy with the objective 
of maximizing his utility (Charilas and 
Panagopoulos, 2010). The utility function 
represents each player’s sensitivity to others 
actions. 

 
3. Behavior of Electricity Consumption 
 
In every household, there are many electric 
appliances commonly used such as 
refrigerator, heater, air conditioner, 
microwave oven, television, water pump, 
and dehumidifier. Each of them consumes 
different range of electricity like refrigerator 
(725 watt), heater (750-1500 watt), air 
conditioner (900-1500 watt). Among all of 
them, the appliances for cooling and heating 
take the highest electric consumption level. 
It takes about 8-34% of the overall energy 
consumption and about 12-38% of the 
overall energy consumption in summer and 
winter, respectively (Takuma et al, 2006).  
 
Furthermore, the consumption level of those 
appliances is sensitive to the environmental 
temperature and lifestyle of the users. For 
that reason, we propose a game theory 
model against nature to understand the 
behavior of the users in using the cooling 
and heating appliances. Thermal comfort of 
the human depends on air temperature, 
radiant temperature, air velocity, and 
humidity (Health and Safety Executive, 
2013). Comfortable air temperature is from 
21oC to 23 oC during winter, and from 23.5 

oC to 25.5 oC during summer. In this 
research, we focus on one adjustable 
variable, which is air temperature.  
 
The user of the household has three 
strategies such as not use the cooling/heating 
appliances, use the cooling/heating 
appliances economically and use the 
cooling/heating comfortably. If the user uses 
the cooling/heating comfortably, amount of 
electricity will increase at the maximum 
level. On the other hand, if the user uses the 
cooling/heating economically, he can reduce 
the cost while maintaining thermal comfort 
at a minimum level. Figure 1 illustrates 
tradeoff between comfort level and 
expenses. The more expenses spend to turn 
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Those three tables imply that expected 
payoff is sensitive toward suffer cost. If 
average suffer cost is above the electricity 
cost, the user prefers to use cooling and 
heating appliances in a comfortable setting. 
On the other hand, the user does not prefer 
to use cooling and heating appliances if the 
average suffer cost is below the electricity 
cost. Figure 2 and 3 illustrate the trend of the 
suffer cost to the payoff and trend of the 
suffer cost to selected strategy, respectively. 
This figure clearly show that there is a trade 
off between suffer cost and payoff and the 
active user tend to use cooling/heating 
appliance comfortably as the suffer cost 
increases. 

 
Table 3. Heating and cooling appliance data for one 

household 
 

No Description Value  
1 AT (maximum or 

minimum temperature 
possible to achieve by 
cooling or heating 
appliance) 

Max: 30oC, Min: 
18oC 

2 ST (the temperature set 
by the tenant) 

23oC 

3 ET (the economic 
temperature) 

20oC 

4 CT (the comfort 
temperature) 

25 oC 

5 EC (electricity cost) JPY20/Kwh 
6 PC (suffer cost) JPY10/Kwh 
7 Temperature probability Low: 0.3, 

Medium: 0.4, 
High: 0.3 

8 Temperature range Low: <5 oC, 
Medium: 5 oC - 10 

oC, High: 10 oC-15 

oC  

 
Table 4. Payoff for each user strategy with suffer cost 

10, 5, 3 
 

    Temperature Expected     Low Medium High 

User 

Not use 
cooling/ 
heating 

10.0  15.0  17.0  14.1 

Use cooling/ 
heating 
economically 

5.1  7.3  11.1  7.8 

Use cooling/ 
heating 
comfortably 

3.7  4.3  6.3  4.7 

 
 
 
 
 
 
 

Table 5. Payoff for each user strategy with suffer cost 
20, 15, 10 

 
  Temperature Expected 
  Low Medium High 

User 

Not use 
cooling/ 
heating 

0.0 5.0  10.0  5.0  

Use cooling/ 
heating 
economically 

2.9 4.5  8.0  5.1  

Use cooling/ 
heating 
comfortably 

3.7 4.3  6.3  4.7  

 
5. Conclusion 

 
This paper successfully built deterministic 
model in power engineering based on game 
theory. The result shows unique behavior of 
the active users toward electricity usage 
especially in using heating and cooling 
appliances. The user strategy is highly 
affected by the suffer cost. This suffer cost is 
related with the physical condition of the 
user, their financial condition, and their life 
style. 
 
Table 6. Payoff for each user strategy with suffer cost 

25, 20, 15 
 

    Temperature Expected 

    Low Medium High 

User 

Not use 
cooling/ 
heating 

-5.0  0.0  5.0  0.0  

Use cooling/ 
heating 
economically 

1.7  3.1  5.7  3.5  

Use cooling/ 
heating 
comfortably 

3.7  4.3  6.3  4.7  

 
 

Figure 2. Suffer cost vs. payoff 
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Figure 3. Suffer cost vs. strategy selection (1=not use 

cooling/heating appliances, 2 use cooling/heating 
appliances economically, 3 use cooling/heating 

appliances comfortably) 
 
This model is practically applicable to be 
used in smart grid with dual bus system. 
Future development of this research can be 
directed to the development of probabilistic 
model of mutual support system in 
electricity generation and distribution. 
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